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Abstract
The longitudinal and spin Hall conductances of an electron gas with Rashba–
Dresselhaus spin–orbit interaction, confined to a quasi-one-dimensional
Aharonov–Bohm ring, are studied as functions of disorder and magnetic flux.
The system is mapped onto a one-dimensional virtual lattice and is described,
in a tight binding approximation, by a Hamiltonian that depends parametrically
on the nearest neighbour hopping integral t , the Rashba spin–orbit coupling VR,
the Dresselhaus spin–orbit coupling VD and an Anderson-like, on-site disorder
energy strength W . Numerical results are obtained within a spin dependent
Landauer–Büttiker formalism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most exciting developments that has resulted from the analysis of spin transport
in ideal two-dimensional (2D) structures is the theoretical prediction of dissipationless spin
currents induced by electric fields. The flow of spin-polarized carriers in a direction
perpendicular both to the driving electric field and to the spin polarization, that occurs in
the presence of a spin–orbit (SO) interaction, is equivalent to an intrinsic spin Hall effect. In
the n-doped semiconductors, the spin–orbit coupling that determines this behaviour originates
either from the inversion asymmetry of the confining potential in the direction perpendicular
to the electron system (Rashba [1]) or from the bulk asymmetry (Dresselhaus [2]). In the case
of the Rashba coupling, the calculated spin Hall conductivity has been found to be equal to a
constant, universal value [3], σsH = e/8π .

The physical existence, i.e. the experimental detection, of the spin Hall effect and its
robustness in disordered systems have been subjects of considerable theoretical debate. It
has been shown by a number of authors that for a 2D electron system with pure Rashba or
Dresselhaus coupling, the spin Hall conductance becomes zero when impurity scattering is
considered [4]. More recently, this conclusion has been extended also to 2D holes in III–V
materials [5]. These results buttress the observation that pure spin currents occur even in the
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absence of the driving fields and not associated with the actual motion of spins [6]. The opposite
view argues that in hole-doped semiconductors, the vertex corrections to the conductivity
resulting from impurity scattering are zero, and consequently the spin Hall effect persists [7].
The extension of these ideas to mesoscopic ring structures has also been actively pursued. The
circular geometry favours quantum interference effects resulting from the phase difference
acquired by electrons. Therefore, an oscillatory behaviour of the spin Hall conductance is
obtained. New phenomena, such as the detection of a pure spin current in the transverse voltage
probes, when conventional unpolarized current is injected through the longitudinal leads of a
ring, are being predicted [8]. Experimental measurements of spin resolved currents in finite
size 2D systems show the possible existence of the effect [9, 10], as predicted theoretically
from numerical simulations [7]. A definite experimental resolution of this controversy is still
awaiting discovery.

In this paper we develop a unitary formalism whose consistent application leads to
numerical values of the longitudinal, GL, and spin Hall, Gs, conductances of an electron
gas with spin–orbit coupling confined to a quasi-one-dimensional Aharonov–Bohm ring as
functions of disorder and magnetic flux. The dependence of these results on the ratio of the
strengths of the two SO interactions is also shown. We start by mapping the Hamiltonian of
the system to a one-dimensional virtual lattice in a tight binding approximation. This approach
allows the simultaneous incorporation of both the Rashba–Dresselhaus terms of the spin–orbit
interaction, as amplitudes of hopping between nearest neighbour sites of the virtual lattice, and
that of disorder as an on-site potential, like in the Anderson model. The exact eigenfunctions
of this Hamiltonian are used to calculate the conductances via the Landauer–Büttiker formula,
where the transmission matrix elements are estimated with real space Green’s functions.

2. Theoretical framework

2.1. The Hamiltonian

The motion of an electron in the quasi-one-dimensional Aharonov–Bohm ring is described by

H = h̄2

2m�

(
−i∂ϕ +

φ

φ0

)2

+
1

r
[(α cos ϕ + β sin ϕ)σx + (α sin ϕ + β cos ϕ)σy]

×
(

−i∂ϕ +
φ

φ0

)
− i

2r
[(α cos ϕ + β sin ϕ)σy + (α sin ϕ + β cos ϕ)σx ], (1)

where p = p0 − (e/c)A is the generalized electron momentum in the magnetic field, σi are
the Pauli matrices, while α (β) is the Rashba (Dresselhaus) spin–orbit coupling strength. We
adopt the standard geometry where A describes a magnetic field B = ∇ × A along the z
direction, B = (0, 0, B). The corresponding magnetic flux φ = πr2 B is a tunable parameter
needed to study the magnetoconductance in the Aharonov–Bohm ring and φ0 is the magnetic
flux quantum φ0 = hc/e.

This is the Hamiltonian obtained in [11] generalized to incorporate the Dresselhaus term of
the SO coupling, proportional to β, in addition to the usual Rashba term, proportional to α. The
additional parameter introduced by the geometry of the system is ϕ, the angular coordinate.
The relative strength of the Rashba and Dresselhaus terms, α/β, describing the spin–orbit
coupling in semiconductor quantum wells, is available from photocurrent measurements [12].
The interplay of the two SO couplings has also been lately subject to intensive theoretical
investigation [13, 14] as regards other physical phenomena in 2DEG, quantum wells and
quantum dots.
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Figure 1. Graphical depiction of the lattice model used for
computing the longitudinal and spin Hall conductance in a one-
dimensional Aharonov–Bohm ring. Four metallic leads are
attached to the ring, acting as: injector (1), detector (2) and
voltage probes (3 and 4).

In the absence of the magnetic field, φ = 0, the 1D spinor that diagonalizes equation (1)
has a general form given by

φs
λ,nϕ = eiλnϕ

(
χ1

χ2eiϕ

)
, (2)

with λ = ±1 (travel direction), n � 0 (the orbital quantum number) and s = ±1 (spin), and the
corresponding eigenvalues are Eλ,n,s . An exact analytic solution in the case of a pure Rashba
coupling is discussed in detail in [15]. Its generalization to include also the Dresselhaus term
is discussed elsewhere [16].

For finite values of the magnetic flux, the problem becomes much more complicated and
only numerical solutions are possible. To resolve this difficulty, we map our system onto a
virtual lattice and consider a Hamiltonian, in a tight binding approximation, of the form

Hring =
N∑

n=1

εnc†
ncn −

N∑
n=1

(tn,n+1c†
ncn+1 + h.c.). (3)

Here c†
j is the creation operator at site j for a spinor c†

j = (c†
j,↑c†

j,↓). The first term in
equation (3) is the on-site disorder, as in the Anderson model, with a random energy generated
by a box distribution [−W/2, W/2]. The on-site term also contains components of the non-
derivative contributions from the SO interaction term from equation (1). This contribution is
off-diagonal in the spin index and diagonal only in the site index. The derivative components
of the SO interactions are incorporated in the hopping term which acquires position and spin
dependence. The prototype structure for our calculation is presented in figure 1. The metallic
leads attached to the sample are considered perfect semi-infinite wires, without disorder and
spin–orbit coupling.

If δ is the virtual lattice constant in the ring, the hopping couplings for the SO interaction
are, respectively, t (R)

0 = α/2δ for Rashba and t (D)
0 = β/2δ for Dresselhaus, leading to phase

dependent couplings equal to

t (0)

n,n+1 = t0ei(2π/N)(φ/φ0),

t (R)

n,n+1 = −it (R)

0

[
cos

ϕn + ϕn+1

2
σx + sin

ϕn + ϕn+1

2
σy

]

t (D)

n,n+1 = −it (D)

0

[
sin

ϕn + ϕn+1

2
σx + cos

ϕn + ϕn+1

2
σy

]
.

(4)

If we consider δ = 5.0 nm the lattice constant, then for number of sites in the ring N = 250,
and for m� = 0.068m the effective mass of the electron (in GaAs), the hopping integral
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Figure 2. Upper panel: spin Hall conductance as a function of the Fermi energy for a 1D Aharonov–
Bohm ring for QR = 3.95, QD = 0.0. The disorder strength is W = 0 (left) and W = 1.0 (right).
Lower panel: longitudinal conductance as a function of the Fermi energy, for different disorder
strengths W = 0.0, W = 1.0 and W = 2.0. The number of sites in the ring is 100.

is t � 21.6 meV, and the radius of the ring is r � 0.2 µm. A typical value for the
Rashba coupling [17] is below 80 meV Å, which corresponds to t (R)

0 � 1.6 meV. A general
adiabaticity condition was proposed in [18] Q � √

N , where N is the number of scattering
events. For diffusive one-dimensional rings this condition is similar to Q � L/ l, where
L is the characteristic length scale of the system over which the effective field due to spin–
orbit interaction changes and l is the mean free path. We followed [15] and introduced the
adiabaticity parameters QR(D) as QR,(D) = 2 t (R),(D)

0 /t0(N/π). Typical values for QR,(D)

considered in this analysis are QR,(D) ∈ [0, 10].
In the LB theory, the total current in terminal p is given by the addition of the transmission

probabilities of electrons from all the other leads: Ip = e2/h
∑

q �=p Tpq(Vp − Vq) (the sum
is over all the other leads q connected to the system). The spin current is similarly defined to
be I spin

p,µ = e/(4π)
∑

q �=p,ν T µν
pq (Vp − Vq) (here µ and ν stand for the spin indices). Ballistic

transport between the leads is assumed. T µν
pq represents the transmission probability over all

the conduction channels, for detecting a spin µ in the lead p arising from an injected spin ν

electron in lead q , when both spin-flip and non-spin-flip processes are considered.
The total scattering between two leads p and q can be simply written as the sum over

all spin components Tpq = T ↑↑
pq + T ↑↓

pq + T ↓↑
pq + T ↓↓

pq . Two other useful combinations [19] are
T in

pq = T ↑↑
pq + T ↑↓

pq − T ↓↑
pq − T ↓↓

pq and T out
pq = T ↑↑

pq + T ↓↑
pq − T ↑↓

pq − T ↓↓
pq . T out

pq represents the
difference between the transmission probabilities for detecting an electron in the lead p arising
from an injected spin ↑ (↓) electron in lead q . The spin Hall conductance is then computed
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Figure 3. Longitudinal conductance (left) and spin Hall conductance (right) as functions of the
disorder for different spin–orbit coupling strengths. In the right panel QR = 0.954, QD = 0.0 (◦
and 
) and QR = 6.366, QD = 3.183 (♦ and �). The results are for two Fermi energy values
(EF = 0.2 and 0.02). The numbers of sites in the ring are 100, and the average is over 1000
different configurations.

according to

GsH = (I spin
3,↑ − I spin

3,↓ )/V1, (5)

while the longitudinal conductance

GL = I2/(V1 − V2). (6)

In our geometry, terminals 3 and 4 are voltage probes and the current flows between terminals 1
and 2. By using the expressions for the voltages obtained by inverting the multiprobe equations
the spin Hall conductance is given by GsH = e/(8π)(T out

13 + T out
43 + T out

23 − T in
34 − 2T in

31), and the
expression for longitudinal conductance is GL = e2/h(T21 + 0.5 T32 + 0.5 T42).

The zero-temperature conductance, G, is directly related to the transmission matrix T,
which is a matrix in spin indices when spin–orbit coupling is present in the system. The
transmission matrix T αβ

pq describes the transmission probability over all the conduction channels
for detecting a spin α in the lead p arising from the spin-flip processes, or lack of them, of an
injected spin β electron in lead q . The retarded Green’s function GR = (EF−H−∑4

p=1 �p)
−1

(EF is the Fermi energy and H is the Hamiltonian for the sample given by equation (3)) and
its Hermite conjugate, the advanced Green’s function (GA = G†

R), allow the calculation of the
transmission matrix: T αβ

pq = Tr[�α
p GR�

β
q GA]. Here �α

p = i(�α
p − �α†

p ) with �α
p the retarded

self-energy, entirely related to the lead–sample scattering. In our analysis we use the tight
binding approximation, extensively discussed in [20], for calculating the self-energy. When
each terminal is modelled by a semi-infinite perfect wire the self-energy matrix is diagonal in
spin indices �

↑
p = �

↓
p .

2.2. Results and discussion

Within the framework outlined above, we obtain numerical estimates for the longitudinal
and spin Hall conductances of a four-terminal ring in the presence of a magnetic field.
Both conductances are studied as functions of the Fermi energy (EF), disorder strength (W ),
dimensionless magnetic flux (φ/φ0) and adiabaticity parameters QR(D). In figure 2 we present
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Figure 4. Longitudinal and spin Hall conductance as a function of the Rashba spin–orbit strength
for two different Dresselhaus couplings and for different disorder strengths. Solid lines represent
results for QD = 0.0 and dashed lines correspond to QD = 3.183. The values of W are 0, 0.3 and
0.5. Left: results for W = 0 were shifted up by 0.2 for clarity. Right: results for W = 0 were
shifted by 0.7 and for W = 0.3 by 0.3. The system size is 100 sites and the average for disordered
samples was taken over 1000 samples. In both figures, the Fermi energy is EF = 0.2.

results for GL and GsH as functions of the Fermi energy. The upper left panel presents
results for a ballistic system, when no disorder is present, while the right panel presents
resulting values of disorder big enough to destroy the spin Hall effect. In the lower panel
we show results for the longitudinal conductance for different disorder strengths. The strong
oscillations in GL and GsH are due to the discrete nature of the energy spectrum in the system.
In figure 3 we present the effect of disorder for a fixed value of the Fermi energy. For W > 1
the spin Hall effect is practically absent and a vanishing value for GsH is obtained. It is
well known by now that the longitudinal conductance of an Aharonov–Bohm ring with a
Rashba SO interaction coupled to two external terminal is oscillating in nature. This effect
was demonstrated theoretically, both by using analytical [21] and by using numerical [15]
methods. The effect of SO scattering in disordered mesoscopic systems was also studied. It was
shown [22] that for some values of SO strength the transport quantities that are periodic exhibit
halving of the period. We did numerical analysis to confirm this behaviour by computing the
harmonics of the longitudinal conductance for a two-contact system (results not shown here),
when the longitudinal conductance was obtained from ensemble averaging over independent
disorder configurations.

In figure 4 we present the effect of spin–orbit coupling, of both Rashba and Dresselhaus
types, on GL and GsH when the ring is connected to four terminals. Oscillating behaviour is
observed, similarly to in the case of a two-terminal structure. We observe that, on increasing
the disorder, the longitudinal conductance’s periodicity is preserved, but the amplitude of the
oscillations is strongly reduced. For GsH, damping oscillating behaviour is observed. An
analytic calculation, shown elsewhere [16], indicates that the modulation damping function is

proportional to 1/

√
(1 + Q2

R) for a system with pure Rashba spin–orbit coupling and in the
absence of an external magnetic field. The Dresselhaus SO term has a strong effect on both GL

and GsH. First, the periodicity as a function of QR is modified and, secondly, the amplitude
of the oscillations is strongly reduced in the limit QR < QD. In our geometry, GsH = 0
when QR = QD for any disorder strength, similarly to in the case of a square lattice [16]. In
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Figure 5. (Upper panel) Left: longitudinal conductance as a function of magnetic flux for different
spin–orbit coupling strengths. (QR = 0.0, QD = 0.0 (solid line), QR = 0.954, QD = 0.0 (dashed
line), QR = 6.366, QD = 0.0 (dash–dotted line) and QR = 6.366, QD = 3.183 (dash–dot–dotted
line).) Right: spin Hall conductance as a function of magnetic field, with similar parameters and
the same line-styles. (Lower panel) Left: effect of disorder on the longitudinal conductance, for
QR = 0.954, QD = 0.0 (red line), QR = 6.366, QD = 0.0 (green line) (data are shifted by +0.05)
and QR = 6.366, QD = 3.183) (blue line) (data are shifted by 0.1 for clarity). Right: spin Hall
conductance in the presence of disorder for the same parameters as in the upper right panel. The
overall behaviour is preserved but the amplitude is strongly reduced in the presence of disorder.
The disorder strength is W = 1.0. All figures: the number of sites is 100 and the Fermi energy
was fixed to EF = 0.2.

figure 5 we present the effect of an external magnetic field. The interference effects in the
conductivity, as a function of the magnetic flux, predicted by Al’tshuler et al [23] originate
from the degeneracies of several eigenstates in the ordered system [24]. We present results for
the clean limit and for disorder strengths which practically destroy the spin Hall effect. In a ring
attached to four terminals, similar oscillations are observed in the longitudinal conductance.

3. Conclusions

In the framework of the tight binding formalism we have computed the spin Hall conductance
and the longitudinal conductance for a one-dimensional Aharonov–Bohm ring attached to four
external terminals.
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Our results strengthen the notion of the possibility of obtaining a spin-polarized current in
the transverse direction when a conventional unpolarized current is injected in the longitudinal
direction. We studied the effect of Rashba and Dresselhaus spin–orbit coupling, disorder and
external magnetic field on transport properties. Our calculations are based on the Landauer–
Büttiker formalism, combined with a Green’s function approach. Both GL and GsH are
oscillating as functions of the Fermi energy both for clean samples and when disorder is
present, due to the discrete nature of energy spectrum for a finite ring. The critical disorder
that destroys the spin Hall effect was found to be close to WC � 1 in our model. When an
external magnetic field threatens the AB ring, interference effects are presents as functions of
the magnetic flux, as predicted by Al’tshuler [23].
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